martes, 10 de julio de 2018

Tabla de la verdad


Las tablas de verdad son, por una parte, uno de los métodos más sencillos y conocidos de la lógica formal, pero la mismo tiempo también uno de los más poderosos y claros. Entender bien las tablas de verdad es, en gran medida, entender bien a la lógica formal misma.

Fundamentalmente, una tabla de verdad es un dispositivo para demostrar ciertas propiedades lógicas y semánticas de enunciados del lenguaje natural o de fórmulas del lenguaje del cálculo proposicional:
  1. . Sin son tautológicas, contradictorias o contingentes
  2. . Cuáles son sus condiciones de verdad
  3. . Cuál es su rol inferencial, es decir, cuáles son sus conclusiones lógicas y de qué otras proposiciones se siguen lógicamente.
Las tablas de la verdad
Estas tablas pueden construirse haciendo una interpretación de los signos lógicos como: no, o, y, si…entonces, sí y sólo si. La interpretación corresponde al sentido que estas operaciones tienen dentro del razonamiento. Puede establecerse una correspondencia entre los resultados de estas tablas y la deducción lógico matemática. En consecuencia, las tablas de verdad constituyen un método de decisión para chequear si una proposición es o no un teorema. Para la construcción de la tabla se asignará el valor 1(uno) a una proposición cierta y 0 (cero) a una proposición falsa.
  • Negación: El valor de verdad de la negación es el contrario de la proposición negada.
    Archivo:Tabla conjunción.JPG
  • La conjunción sirve para indicar que se cumplen dos condiciones simultáneamente, por ejemplo: 
La función es creciente y está definida para los números positivos, utilizamos Para que la conjunción p^q sea verdadera las dos expresiones que intervienen deben ser verdaderas y sólo en ese caso como se indica por su tabla de verdad.
  • Disyunción: La disyunción solamente es falsa si lo son sus dos componentes.
Con la disyunción a diferencia de la conjunción, se representan dos expresiones que afirman que una de las dos es verdadera, por lo que basta con que una de ellas sea verdadera para que la expresión p q sea verdadera.
  • Condicional: El condicional solamente es falso cuando el antecedente es verdadero y el consecuente es falso. De la verdad no se puede seguir la falsedad.

  • Bicondicional:El bicondicional solamente es cierto si sus componentes tienen el mismo valor de verdad.

Pasos para construir una

    Resultado de imagen para gif like
  1. Escribir la fórmula con un número arriba de cada operador que indique su jerarquía. Se escriben los enteros positivos en orden, donde el número 1 corresponde al operador de mayor jerarquía. Cuando dos operadores tengan la misma jerarquía, se le asigna el número menor al de la izquierda.
  2. Construir el árbol sintáctico empezando con la fórmula en la raíz y utilizando en cada caso el operador de menor jerarquía. O sea, del número mayor al menor.
  3. Numerar las ramas del árbol en forma secuencial empezando por las hojas hacia la raíz, con la única condición de que una rama se puede numerar hasta que estén numerados los hijos. Para empezar con la numeración de las hojas es buena idea hacerlo en orden alfabético, así todos obtienen los renglones de la tabla en el mismo orden para poder comparar resultados.
  4. Escribir los encabezados de la tabla las fórmulas siguiendo la numeración que se le dió a las ramas en el árbol sintáctico.
  5. Asignarle a los átomos, las hojas del árbol, todos los posibles valores de verdad de acuerdo al orden establecido. Por supuesto que el orden es arbitrario, pero como el número de permutaciones es n!, conviene establecer un orden para poder comparar resultados fácilmente.
  6. Asignar valor de verdad a cada una de las columnas restantes de acuerdo al operador indicado en el árbol sintáctico utilizando la tabla de verdad. Conviene aprenderse de memoria las tablas de los operadores, al principio pueden tener un resumen con todas las tablas mientras se memorizan.
  7. La última columna, correspondiente a la fórmula original, es la que indica los valores de verdad posibles de la fórmula para cada caso.

No hay comentarios.:

Publicar un comentario